Synthesis of the Benz[a]anthraquinone Core of Angucyclinone Antibiotics

Aris Kalogerakis and Ulrich Groth*

Fachbereich Chemie, Universität Konstanz, Fach M-720, Universitaetsstrasse 10, 78457 Konstanz, Germany

ulrich.groth@uni-konstanz.de

Received December 18, 2002

ABSTRACT

A general method for the synthesis of benz[a]anthraquinones is reported. The key step is a catalytic cobalt-mediated [2+2+2]-cycloaddition of a triyne, which affords an angularly substituted tetracycle. Oxidation of this core gives the typical structure of angucyclinone antibiotics.

The angucyclines are a large class of antibiotics isolated from several strains of *Streptomyces*. They display a broad spectrum of biological properties including antiviral, antifungal, antitumor, and enzyme inhibitor activity.¹ Most of these antibiotics feature a unique benz[*a*]anthraquinone structure either with or without a 9-*C*-glycosidic moiety. Members of this class of angucyclines without a glycosidic moiety, the angucyclinones, have the benz[*a*]anthraquinone structure either without a hydroxy group at C-6 such as (+)-rubiginone B₂ 1² or with a hydroxy group at C-6 such as (+)-hatomarubigin A 2.³ Some members of this class feature a tertiary hydroxy group at C-3 such as (-)-tetrangomycin 3⁴ and (-)-rabelomycin 4.⁵

Most general strategies for the construction of the angucyclinone framework are based on Diels–Alder reaction of a naphthoquinone with a vinylcyclohexene⁶ or on biomimetic-type reactions⁷ by employing polyketide condensations.

ORGANIC LETTERS

2003 Vol. 5, No. 6

843-844

Herein we would like to present the first synthesis of the benz[*a*]anthraquinone structure of the angucyclinone antibiotics via an intramolecular cobalt-mediated [2+2+2]cycloaddition⁸ of a triyne. The cyclization of triynes is a powerful synthetic method to form several carbon–carbon bonds in one step and provides access to polycyclic systems with a newly formed highly substituted benzene nucleus. We were able to synthesize a triyne-precursor **11** (Scheme 1) which, after cobalt-mediated [2+2+2]-cycloaddition, gave the anthracene structure **13** (Scheme 2).⁹ Cyclization experiments with RhCl(PPh₃)₃ and RuCl₂(=CHPh)(PCy₃)₂, which

^{(1) (}a) Rohr, J.; Thiericke, R. Nat. Prod. Rep. **1992**, 103–137. (b) Krohn, K.; Rohr, J. Top. Curr. Chem. **1997**, 188, 127–195.

⁽²⁾ Oka, M.; Kamei, H.; Hamagishi, Y.; Omita, K.; Miyaki, T.; Konish, M.; Oki, T. J. Antibiot. **1990**, *43*, 967–976.

⁽³⁾ Hayakawa, Y.; Ha, S.-C.; Kim, Y. L.; Furihata, K.; Sato, H. J. Antibiot. **1991**, 44, 1179-1186.

⁽⁴⁾ Kunstmann, M. P.; Mitscher, L. A. J. Org. Chem. 1996, 31, 2920–2925.

⁽⁵⁾ Liu, W.-C.; Parker, W. L.; Slusarchyk, D. S.; Greenwood, G. L.; Graham, S. F.; Meyers, E. J. Antibiot. **1970**, 23, 437–441.

^{(6) (}a) Carreño, M. C.; Urbano, A.; Vitta, C. D. Chem. Commun. 1999, 817–818. (b) Carreño, M. C.; Urbano, A.; Vitta, C. D. Chem. Eur. J. 2000, 6, 906–913. (c) Larsen, D. S.; O'Shea, M. D.; Brooker, S. Chem. Commun. 1996, 203–204. (d) Boyd, V. A.; Sulikowski, G. A. J. Am. Chem. Soc. 1995, 117, 8472–8473.

^{(7) (}a)Yamaguchi, M.; Okuma, T.; Horiguchi, C.; Ikeura, C.; Minami, T. *J. Org. Chem.* **1992**, *57*, 1647–1649. (b) Krohn, K.; Böker, N.; Flörke, U.; Freund, C. J. Org. Chem. **1997**, *62*, 2350–2356.

 ^{(8) (}a) Vollhardt, K. P. C. Angew. Chem., Int. Ed. Engl. 1984, 23, 539–644.
 (b) Malacria, M. Chem. Rev. 1996, 96, 289–306.

⁽⁹⁾ Transition Metal Catalyzed Reactions in Organic Synthesis, Part 3. For Part 2, see: Fischer, S.; Groth, U.; Jung, M.; Schneider, A. *Synlett* **2002**, 2023–2026.

^{*a*} Reagents and conditions: (a) (i) *s*-BuLi/TMEDA, THF, -80 °C, 1 h, (ii) ZnCl₂, -80 °C, 1 h, (iii) CuCN·2LiCl, -80 °C, 1 h, (iv) (3-bromoprop-1-ynyl)trimethylsilane **5**, -80 °C to room temperature (85%). (b) DIBAL/BuLi, THF, 25 °C, 18 h (68%). (c) BuLi/1-TMS-1,7-octadiyne, THF (82%). (d) (i) NH₄F/Bu₄NHSO₄, CH₂Cl₂, 48 h, (ii) TBDMSOTf, 2,6-lutidine, CH₂Cl₂, 25 °C, 2 h (95%).

can also promote alkyne trimerization,¹⁰ were not successful in our systems. Two-step oxidation of 13 led then to the angucyclinone core 15.

The amide 6^{11} was at first selectively ortho-lithiated with *s*-BuLi/TMEDA.^{12b} It was then transmetalated with ZnCl₂ and then CuCN·2LiCl and allowed to react with (3-bromoprop-1-ynyl)trimethylsilane **5** to give the propynyl-amide **7**.^{12c} This was directly reduced to benzaldehyde **8** with the DIBAL/BuLi complex.¹³ After addition of lithiated 1-TMS-1,7-octadiyne¹⁴ to this aldehyde, the triple bonds of the resulting tripne **9** were deprotected with NH₄F¹⁵ (deprotection with TBAF in THF led to decomposition of the tripne **9**). The hydroxy group was then transformed into its silyl ether **11** with the aid of TBDMSOTf.¹⁶

For the cyclization of **11** we used $CpCo(ethene)_2^{17}$ and the commercially available $CpCo(CO)_2$. Reaction of **11** with 5% $CpCo(ethene)_2$ succeeded under mild conditions at low temperature. Surprisingly we observed the loss of the TBDMSO-group with concomitant aromatization to the

Scheme 2^{*a*}

^{*a*} Reagents and conditions: (a) 5% CpCo(ethene)₂, Et₂O, -80 °C to room temperature, 18 h, or 5% CpCo(CO)₂, toluene, reflux, *hv*, 4 h (66%). (b) 8 equiv of [Ag(Py)₂]MnO₄, CH₂Cl₂, 25 °C, 18 h (63%). (c) *hv*, air, CHCl₃, 25 °C, 18 h (61%).

anthracene **13** (55% yield and 16% isolated starting material). In the case of CpCo(CO)₂ the reaction had been carried out in toluene under reflux and irradiation with a tungsten lamp (66% yield). Oxidation of **13** with the aid of the mild reagent [Ag(Py)₂]MnO₄ gave the anthraquinone **14** (63% yield).¹⁸ We have also been trying to oxidize with CrO₃ in AcOH, but these conditions led to decomposition of the anthracene. The introduction of the C-1 carbonyl was achieved by photooxidation, a general method for the angucyclinones developed by Krohn.¹⁹ Exposure of **14** to visible light (tungsten lamp) gave the typical structure **15** of the angucyclinone antibiotics (61% yield).

In conclusion, the angucyclinone framework **15** was synthesized from benzamide **6** in 8 steps and 11% yield overall. This method provides a new access toward the angucyclinone antibiotics, which do not have a hydroxy group at C-6. The stereocenter at C-3 is not involved in the [2+2+2]-cycloaddition, therefore this methodology offers a good strategy for the enantioselective synthesis of this class of antibiotics.

Acknowledgment. The authors are grateful to the Fonds der Chemischen Industrie and the EU-Comission, Directorate XII, for financial support.

Supporting Information Available: Experimental procedures and analytical data for all compounds, ¹H NMR and ¹³C NMR spectra for **13**, **14**, and **15**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0274920

^{(10) (}a) Witulski, B.; Stengel, T. Angew. Chem., Int. Ed. 1999, 38, 2426–2430.
(b) Neeson, S. J.; Stevenson, P. J. Tetrahedron 1989, 45, 6239–6248.
(c) Blechert, S.; Peters, J. U. Chem. Commun. 1997, 1983–84.

⁽¹¹⁾ Brimble, M. A.; Robinson, S. G. *Tetrahedron* **1996**, *52*, 9553–9562.

^{(12) (}a) Kreye, P. Ph. D Thesis, University of Goettingen (F.R.G.), 1996.
(b) Snieckus, V. *Chem. Rev.* **1990**, *90*, 0, 879–933. (c) Singer, P. D.; Knochel, P. *Chem. Rev.* **1993**, *93*, 2117–2188.

⁽¹³⁾ Kim, S.; Ahn, K. H. J. Org. Chem. 1984, 49, 1717-1724.

⁽¹⁴⁾ Rudisill, D. E.; Stille, J. K. J. Org. Chem. **1989**, 54, 5856–5866. (15) Herold, P. Helv. Chim. Acta **1986**, 71, 354–356.

⁽¹⁶⁾ Corey, E. J.; Cho, H.; Ruecker, C.; Hua, D. H. Tetrahedron Lett. 1981, 36, 3455-3458.

^{(17) (}a) Jonas, K.; Deffense, E.; Habermann, D. Angew. Chem., Int. Ed. Engl. **1983**, 22, 716. (b) Eichberg, M. J.; Dorta, R. L.; Lamottke, K.; Vollhardt, K. P. C. Org. Lett. **2000**, 16, 2479–2481. (c) Eichberg, M. J.; Dorta, R. L.; Grotjahn, D. B.; Lamottke, K.; Schmidt, M.; Vollhardt, K. P. C. J. Am. Chem. Soc. **2001**, 123, 9324–9337. (d) Cammack, J. K.; Jalisatgi, S.; Matzger, A. J.; Negrón, A.; Vollhardt, K. P. C. J. Org. Chem. **1996**, 61, 4798–4800.

⁽¹⁸⁾ Tius, M. A.; Galeno, J. G.; Gu, X.; Zaid, J. H. J. Am. Chem. Soc. **1991**, 113, 5775–5783.

^{(19) (}a) Krohn, K.; Ballwanz, F.; Baltus, W. Liebigs Ann. Chem. **1993**, 911–913. (b) Krohn, K.; Micheel, J.; Zukowski, M. Tetrahedron **2000**, 56, 4753–4758. (c) Caygill, G. B.; Larsen, D. S.; Brooker, S. J. Org. Chem. **2001**, 66, 7427–7431. (d) Mal, D.; Roy, H. N. J. Chem. Soc., Perkin Trans. I **1999**, 3167–3171. (e) Carreño, M. C.; Ribagorda, M.; Somoza, A.; Urbano, A. Angew. Chem., Int. Ed. **2002**, 41, 2755–2757.