Synthesis of the Benz[*a***]anthraquinone Core of Angucyclinone Antibiotics**

Aris Kalogerakis and Ulrich Groth*

*Fachbereich Chemie, Uni*V*ersita*¨*t Konstanz, Fach M-720, Uni*V*ersitaetsstrasse 10, 78457 Konstanz, Germany*

ulrich.groth@uni-konstanz.de

Received December 18, 2002

ABSTRACT

A general method for the synthesis of benz[*a***]anthraquinones is reported. The key step is a catalytic cobalt-mediated [2**+**2**+**2]-cycloaddition of a triyne, which affords an angularly substituted tetracycle. Oxidation of this core gives the typical structure of angucyclinone antibiotics.**

The angucyclines are a large class of antibiotics isolated from several strains of *Streptomyces*. They display a broad spectrum of biological properties including antiviral, antifungal, antitumor, and enzyme inhibitor activity.¹ Most of these antibiotics feature a unique benz[*a*]anthraquinone structure either with or without a 9-*C*-glycosidic moiety. Members of this class of angucyclines without a glycosidic moiety, the angucyclinones, have the benz[*a*]anthraquinone structure either without a hydroxy group at C-6 such as (+) rubiginone B_2 1^2 or with a hydroxy group at C-6 such as (+)-hatomarubigin A 2^3 Some members of this class feature
a tertiary hydroxy group at C_2 ³ such as $(-)$ -tetranoomycin a tertiary hydroxy group at C-3 such as $(-)$ -tetrangomycin $3⁴$ and (-)-rabelomycin 4.⁵
Most general strategies

Most general strategies for the construction of the angucyclinone framework are based on Diels-Alder reaction of a naphthoquinone with a vinylcyclohexene⁶ or on biomimetic-type reactions⁷ by employing polyketide condensations.

ORGANIC LETTERS

2003 Vol. 5, No. 6 ⁸⁴³-**⁸⁴⁴**

Herein we would like to present the first synthesis of the benz[*a*]anthraquinone structure of the angucyclinone antibiotics via an intramolecular cobalt-mediated [2+2+2] cycloaddition⁸ of a triyne. The cyclization of triynes is a powerful synthetic method to form several carbon-carbon bonds in one step and provides access to polycyclic systems with a newly formed highly substituted benzene nucleus. We were able to synthesize a triyne-precursor **11** (Scheme 1) which, after cobalt-mediated $[2+2+2]$ -cycloaddition, gave the anthracene structure 13 (Scheme 2).⁹ Cyclization experiments with $RhCl(PPh_3)_3$ and $RuCl_2(=CHPh)(PCy_3)_2$, which

^{(1) (}a) Rohr, J.; Thiericke, R. *Nat. Prod. Rep.* **¹⁹⁹²**, 103-137. (b) Krohn, K.; Rohr, J. *Top. Curr. Chem.* **¹⁹⁹⁷**, *¹⁸⁸*, 127-195.

⁽²⁾ Oka, M.; Kamei, H.; Hamagishi, Y.; Omita, K.; Miyaki, T.; Konish, M.; Oki, T. *J. Antibiot.* **¹⁹⁹⁰**, *⁴³*, 967-976.

⁽³⁾ Hayakawa, Y.; Ha, S.-C.; Kim, Y. L.; Furihata, K.; Sato, H. *J. Antibiot.* **¹⁹⁹¹**, *⁴⁴*, 1179-1186.

⁽⁴⁾ Kunstmann, M. P.; Mitscher, L. A. *J. Org. Chem.* **¹⁹⁹⁶**, *³¹*, 2920- 2925.

⁽⁵⁾ Liu, W.-C.; Parker, W. L.; Slusarchyk, D. S.; Greenwood, G. L.; Graham, S. F.; Meyers, E. *J. Antibiot.* **¹⁹⁷⁰**, *²³*, 437-441.

^{(6) (}a) Carren˜o, M. C.; Urbano, A.; Vitta, C. D. *Chem. Commun.* **1999**, 817-818. (b) Carreño, M. C.; Urbano, A.; Vitta, C. D. *Chem. Eur. J.* 2000, 6, 906-913. (c) Larsen, D. S.; O'Shea, M. D.; Brooker, S. *Chem. Commun. ⁶*, 906-913. (c) Larsen, D. S.; O'Shea, M. D.; Brooker, S. *Chem. Commun.* **¹⁹⁹⁶**, 203-204. (d) Boyd, V. A.; Sulikowski, G. A. *J. Am. Chem. Soc.* **¹⁹⁹⁵**, *¹¹⁷*, 8472-8473.

^{(7) (}a)Yamaguchi, M.; Okuma, T.; Horiguchi, C.; Ikeura, C.; Minami, T. *J. Org. Chem.* **1992**, *57*, 1647-1649. (b) Krohn, K.; Böker, N.; Flörke, U.; Freund, C. *J. Org. Chem.* **¹⁹⁹⁷**, *⁶²*, 2350-2356.

^{(8) (}a) Vollhardt, K. P. C. *Angew. Chem., Int. Ed. Engl.* **¹⁹⁸⁴**, *²³*, 539- 644. (b) Malacria, M. *Chem. Re*V*.* **¹⁹⁹⁶**, *⁹⁶*, 289-306.

⁽⁹⁾ Transition Metal Catalyzed Reactions in Organic Synthesis, Part 3. For Part 2, see: Fischer, S.; Groth, U.; Jung, M.; Schneider, A. *Synlett* **²⁰⁰²**, 2023-2026.

 a Reagents and conditions: (a) (i) s -BuLi/TMEDA, THF, -80 $°C$, 1 h, (ii) ZnCl₂, -80 °C, 1 h, (iii) CuCN·2LiCl, -80 °C, 1 h, (iv) (3-bromoprop-1-ynyl)trimethylsilane $5, -80$ °C to room temperature (85%). (b) DIBAL/BuLi, THF, 25 °C, 18 h (68%). (c) BuLi/ 1-TMS-1,7-octadiyne, THF (82%). (d) (i) NH_4F/Bu_4NHSO_4 , CH_2Cl_2 , 48 h, (ii) TBDMSOTf, 2,6-lutidine, CH_2Cl_2 , 25 °C, 2 h (95%).

can also promote alkyne trimerization,¹⁰ were not successful in our systems. Two-step oxidation of **13** led then to the angucyclinone core **15**.

The amide **6**¹¹ was at first selectively ortho-lithiated with s -BuLi/TMEDA.^{12b} It was then transmetalated with $ZnCl₂$ and then CuCN'2LiCl and allowed to react with (3 bromoprop-1-ynyl)trimethylsilane **5** to give the propynylamide **7**. 12c This was directly reduced to benzaldehyde **8** with the DIBAL/BuLi complex.13 After addition of lithiated 1-TMS-1,7-octadiyne14 to this aldehyde, the triple bonds of the resulting triyne 9 were deprotected with NH_4F^{15} (deprotection with TBAF in THF led to decomposition of the triyne **9**). The hydroxy group was then transformed into its silyl ether **11** with the aid of TBDMSOTf.16

For the cyclization of 11 we used $CpCo(\text{ethene})_2^{17}$ and the commercially available CpCo(CO)₂. Reaction of 11 with 5% $CpCo(ethene)$ ₂ succeeded under mild conditions at low temperature. Surprisingly we observed the loss of the TBDMSO-group with concomitant aromatization to the

Scheme 2*^a*

a Reagents and conditions: (a) 5% CpCo(ethene)₂, Et₂O, -80 °C to room temperature, 18 h, or 5% CpCo(CO)₂, toluene, reflux, *hv*, 4 h (66%). (b) 8 equiv of $[Ag(Py)_2]MnO_4$, CH_2Cl_2 , 25 °C, 18 h (63%). (c) *hν*, air, CHCl3, 25 °C, 18 h (61%).

anthracene **13** (55% yield and 16% isolated starting material). In the case of $CpCo(CO)_2$ the reaction had been carried out in toluene under reflux and irradiation with a tungsten lamp (66% yield). Oxidation of **13** with the aid of the mild reagent $[Ag(Py)_2]MnO_4$ gave the anthraquinone 14 (63% yield).¹⁸ We have also been trying to oxidize with $CrO₃$ in AcOH, but these conditions led to decomposition of the anthracene. The introduction of the C-1 carbonyl was achieved by photooxidation, a general method for the angucyclinones developed by Krohn.19 Exposure of **14** to visible light (tungsten lamp) gave the typical structure **15** of the angucyclinone antibiotics (61% yield).

In conclusion, the angucyclinone framework **15** was synthesized from benzamide **6** in 8 steps and 11% yield overall. This method provides a new access toward the angucyclinone antibiotics, which do not have a hydroxy group at C-6. The stereocenter at C-3 is not involved in the $[2+2+2]$ -cycloaddition, therefore this methodology offers a good strategy for the enantioselective synthesis of this class of antibiotics.

Acknowledgment. The authors are grateful to the Fonds der Chemischen Industrie and the EU-Comission, Directorate XII, for financial support.

Supporting Information Available: Experimental procedures and analytical data for all compounds, ¹ H NMR and 13C NMR spectra for **13**, **14**, and **15**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0274920

^{(10) (}a) Witulski, B.; Stengel, T. *Angew. Chem., Int. Ed.* **¹⁹⁹⁹**, *³⁸*, 2426- 2430. (b) Neeson, S. J.; Stevenson, P. J. *Tetrahedron* **¹⁹⁸⁹**, *⁴⁵*, 6239-

^{6248. (}c) Blechert, S.; Peters, J. U. *Chem. Commun.* **¹⁹⁹⁷**, 1983-84. (11) Brimble, M. A.; Robinson, S. G. *Tetrahedron* **¹⁹⁹⁶**, *⁵²*, 9553- 9562.

^{(12) (}a) Kreye, P. Ph. D Thesis, University of Goettingen (F.R.G.), 1996. (b) Snieckus, V. *Chem. Re*V*.* **¹⁹⁹⁰**, *⁹⁰*, 0, 879-933. (c) Singer, P. D.; Knochel, P. *Chem. Re*V*.* **¹⁹⁹³**, *⁹³*, 2117-2188.

⁽¹³⁾ Kim, S.; Ahn, K. H. *J. Org. Chem.* **¹⁹⁸⁴**, *⁴⁹*, 1717-1724.

⁽¹⁴⁾ Rudisill, D. E.; Stille, J. K. *J. Org. Chem.* **¹⁹⁸⁹**, *⁵⁴*, 5856-5866. (15) Herold, P. *Hel*V*. Chim. Acta* **¹⁹⁸⁶**, *⁷¹*, 354-356.

⁽¹⁶⁾ Corey, E. J.; Cho, H.; Ruecker, C.; Hua, D. H. *Tetrahedron Lett.* **¹⁹⁸¹**, *³⁶*, 3455-3458.

^{(17) (}a) Jonas, K.; Deffense, E.; Habermann, D. *Angew. Chem., Int. Ed. Engl.* **1983**, *22*, 716. (b) Eichberg, M. J.; Dorta, R. L.; Lamottke, K.; Vollhardt, K. P. C. *Org. Lett.* **²⁰⁰⁰**, *¹⁶*, 2479-2481. (c) Eichberg, M. J.; Dorta, R. L.; Grotjahn, D. B.; Lamottke, K.; Schmidt, M.; Vollhardt, K. P. C. *J. Am. Chem. Soc.* **²⁰⁰¹**, *¹²³*, 9324-9337. (d) Cammack, J. K.; Jalisatgi, S.; Matzger, A. J.; Negrón, A.; Vollhardt, K. P. C. J. Org. Chem. 1996, δ 1, ⁴⁷⁹⁸-4800.

⁽¹⁸⁾ Tius, M. A.; Galeno, J. G.; Gu, X.; Zaid, J. H. *J. Am. Chem. Soc.*

¹⁹⁹¹, *¹¹³*, 5775-5783. (19) (a) Krohn, K.; Ballwanz, F.; Baltus, W. *Liebigs Ann. Chem.* **1993**, ⁹¹¹-913. (b) Krohn, K.; Micheel, J.; Zukowski, M. *Tetrahedron* **²⁰⁰⁰**, *⁵⁶*, 4753-4758. (c) Caygill, G. B.; Larsen, D. S.; Brooker, S. *J. Org. Chem.* **²⁰⁰¹**, *⁶⁶*, 7427-7431. (d) Mal, D.; Roy, H. N. *J. Chem. Soc., Perkin Trans. 1* **1999**, 3167-3171. (e) Carreño, M. C.; Ribagorda, M.; Somoza, A.; Urbano, A. *Angew. Chem., Int. Ed.* **²⁰⁰²**, *⁴¹*, 2755-2757.